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Allltract-The present analysis is an attempt to determine the portion of a rectangular slab that is acting
with its two parallel stUfening edge beams, through which prestressing loads are applied to the entire
section. in resisting load. Employing the well known theories of bending of plates and beams, the
constitutive equations governing the behaviour of this type of composite system are presented. In
particular. the equation of compatibility of strains between the slab edges and the stiffening edge beams at
their junctions is formulated. In doing this, the biaxial nature of the bending of the edge beams, ignored in
earlier formulations [I I, has been incorporated. The results of the present analysis show that, under
transverse loading, the portion of the slab, called the effectiv widtla, that can be considered effective as a
part of each of the stUfeninl edge beams in determininl stresses and deflexions is not sipificantly different
from that obtained for an unprestressed section or a simply reinforced section. The effective width of the
slab when such a section is subjected to only prestressing loads however shows a sipificant difference. We
conclude from this that a single table of effective widths could be adopted for desip purposes when
considering transverse bending of this type of composite system whether the section is prestressed or not.
Typical stress distributions due to (i) prestress alone, (ii) transverse loading alone and (ii) combined
prestress and transverse loadinl are presented to demonstrate that the present formulation is versatile
enough to solve problems involving prestressed edle beams in this type of composite assembly.

INTRODUCTION

The analysis of a rectangular slab of constant thickness, simply supported at two opposite
edges and having identical edge beams integral with the slab along the other two edges was first
presented by Allen and Severn[1]. Their presentation was aimed at verifying the reliability of
theoretical stresses and deftexions obtained from their assumed mathematical model with
experimental results. They succeeded in that regard. In the present analysis we are concerned
with the determination of suitable mathematical model that will enable us determine effective
widths of the slab acting with each of the two edge beams when the edge beams may
themselves be subject to prestressing load in addition to transverse loading. One significant
difference between the present formulation and that due to Allen and Severn is the in­
corporation in the present analysis of biaxial bending of the edge ribs in the determination of
longitudinal bending strains at the edge beams when formulating the strain compatibility
condition between slab and beam. This means that our eqns (24) and (25) represent a more
correct and complete model of joint strain compatibility condition than the corresponding one
due to Allen and Severn.

NOTATION
a span
A edle beam cross-sectional area
b half width of slab
b, width of edge beam at junction with slab
C torsional couple in edge beam
D cylindrical stiffness of slab

em maximum eccentricity of prestressing force
E elastic modulus of concrete

EI ftexural riJidity of edge beam about major axis
Ei ftexural riJidity of edge beam about minor axis
Faxial force between slab and edle beam
h distance between centroidal axis of edge beam and slab

H overall depth of edge beam
K torsional riaidity of edge beam

M" Mr bendinl moments in edge beam
Mu , M" direct bending moment in slab

M" torsional bending moment in slab
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n, m number of harmonics
p intensity of uniformly distributed loading
P prestressing force
q superimposed slab loading
t slab thickness

u., u, extensional deformations in slab
Vyb Kirchoff's shear at slab-beam junction edge of slab

Vu , V" Kirchoff's shears at plate edges
w transverse deflexion
W transverse point load

x, y Cartesian coordinates
Uu, UY)'o u" membrane stresses in slab

I.L Poisson's ratio
~ stress function

GOVERNING EQUATIONS
Bending

The deftexion field, w, for an elastic isotropic plate subjected to transverse loading is
governed by

V"W =E..
D

(1)

where V" denotes the two dimensional biharmonic operator and D the cylindrical stiffness of
the slab.

Using the system of coordinates (x, y) shown in Fig. 1and assuming a symmetric loading with
respect to the y coordinate, a suitable series solution of eqn (1) in respect of a rectangular slab
simply supported at x = 0 and x = a is given by

(2)

where An = (2" - l)(1T/a), and for convenience we omit the summation sign of the series over n.
Noting that the expressions for bending moment, My", and Kirchoff's shears Vy" at the edges

y =±b of a plate are derivable from the expressions

Myy =-D[woyy +JLW,n] }
Vyy =-D[woyy +(2- JL)w,n], Y

(3)

we deduce that

Myy" =(1- JL)A~D[(1-:)1~aD-Anl chl/1 - Dill (t/1shl/1 +1~ JL cht/1)] sin AIIX (4)

Vyy" = (1- JL)A~D[A. l shl/1 +Dill ( l/1chl/1 - ~ ~ tt .Shl/1)] sin Allx (5)

where l/1 = Anb.

b

b

y

Q

Fig. I.
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Stretching
To obtain the complete stress distribution in the plate we must adjoin to the deftexion field

the displacement fields in terms of the Airys stress function, ~, which define the plane-stress
and in-plane displacements as follows:

UJU = ~,yy

U yy =~ux

Uxy = ~Uy

Euz,Jl =Uxx - JLUyy
Euy,y = U yy - JLUxx

(6)

where (U., uy ) denotes the displacement vector, E the elastic modulus, JL Poisson's ratio, while
the function ~ satisfies the biharmonic equation

(7)

Assuming stress free edges at x =0 and x =a, i.e. Uu =U"y =0, and also symmetrical loading
with respect to the y axis, we construct a suitable series solution of eqn (7) as

provided

(9)

71'
a. =(2n -l>b

l/1, =A,b.

By the application of relevant equations in (6) above, we obtain expressions for certain stresses,
displacement component and longitudinal strain at the edge of the slab y = b as follows:

Uyyb = -A~[A.2chl/1 +D.2l/1shl/1] sin A.x

+ a.E.2[a.(x - a)sha.x +a.xsha.(x - a) +2cha.x +2cha.(x - a)] (10)
a

eub =(1 + JL)E- 1
{ A~ [ A.2chl/1 +D.2( l/1shl/1 +1; JL . chl/1)] sin A.x - a.;.2

x [ a.(x - a)sha.x +a.xsha.(x - a) + 1:JLJL(cha.x +cha.(x - a»)]J. (13)

CONSTITUTIVE EQUATIONS ESTABLISHING INTERACTION
BETWEEN SLAB AND EDGE BEAMS

For convenience, the constitutive equations needed to solve this problem completely are
derived in the order in which they are employed in a subsequent computer program.
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Equilibrium about the major axis
Noting that the edge rib subjected to bending moment due to the interacting axial forces F

between beam and slab, as wen as to bending due to transverse deftexion about its major axis,
then we can express the total moment of resistance, MT, exhibited by the rib as

Mr =M, + fiF (14)

where M, is the moment of resistance of the rib alone in the absence of the interacting axial
force F.

Considering the vertical equilibrium of the edge beam, we have

6S-(Vy,,-p)8x =0

Hence, noting that Sox =MT•xx eqns (14) and (15) combine to become

M,.xx + fiFm - Vy" +P=0

(15)

(16)

where Mr =-Elwb.:tx and F =-tefl'YIY:'"
Employing the expressions previously determined for wand cP and for the Kirchoffs shear

Vyb, we reduce eqn (16) to

[A~Elch"'/fI +(1- ",)A~Dshl/JllllAml+[A~Elt/llIIshl/Jm

+(1- ",)A ~ID(t/lmchl/Jm - (1 +",)(1- ",);'shl/Jm}Dm,

- [A ~tfish'mlAm2 - [A~tfi(lItmchl/im +shl/Jm)}Dm2 =Pm _ E~m

where q", =4(Ama)~I,

(17)

Torsional equilibrium
Considering the forces on the edge beam as shown in Fig. 2(a), the torsional couple, C, on the

beam is given by

Hence

b, -
C=2" .Vy" +My" - th . (Tyy'"

- br-kwoxxy + th . (Tn" - 2" .Vy" - My" =O.

(18)

(19)

Using the relations previously derived for (Tyy'" Vyb, My" and w in eqn (19) and multiplying the
equation by sin A/fIx and then integrating with respect to x from 0 to a, we make use of the wen
known trigonometric orthogonality relations and the following definite integral

1" . 4A (l +cha,a)
o {a,(x - a)sha,x +a,xsha,(x - a)+ 2cha,x +2cha,(x - a)} sm Amx dx = (,\~ +a~)2

to reduce the equation to the foUowing

[AIIIKShl/Jm-(1- ",librDShl/Jm +(1- ",)Dchlltlll ]Aml + [AIIIK(l/JIIIChl/Jm + shl/Jm)-r'

x (1- ",)AmbrD(l/J",chl/Jm -(1 +",)(1- ",r'sht/lm)

+(1- ",)D(l/Imshl/JIII + ... +2(1- ILr'chl/lm»Dml.. ..
- [tfichl/JmlAIII2 - [thllt",shl/Jm}Dm2 + th I I Hm,[G,.A.2 + FI'$DdJ = 4#LA;,sa-'q (20)

s-I,-I
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where

H - 8 . a,..\",(1 + cha,a)
Ill' - i? (A~ +a;)2 (21)

2a/b A~
Ors = + h .~A+ . shAsba,a s a,a • a,

(22)

_ 2alb A~ [ a;-A~]
Frs - + h ~+ A.bchA.b +~+shA.b.a,a s a,a 1\, a, 1\ , a,

(23)

Junction strain compatibility condition
Two of the conditions needed in arriving at the required number of constitutive equations in

order to make our present problem soluble, are obtained from the conditions of bending of the
edge beam about its major and minor axes. These conditions of biaxial bending imply that the
longitudinal strains in the edge beam are due to the axial load in the beam as well as to couples
that exist about the beams' major and minor axes.

With this as a guide we state the condition of junction strain compatibility between beam and
slab as follows.

(24)

where (1" the beam stress, is given by

(1, =-(P - F)IA, +Ehw;u - E:, uy,xx. (25)

A, is the beam cross-sectional area.
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Substituting for F, w, "" UUl u". eqns (24) and (25) combine to yield the relations

(Amiicht/lmJAm1+ [Amiit/lmsht/lmJDml + E- I [Sht/lm ·l, + (I -1L)Amcht/lm + (I + IL)A ;b,sht/lm JAm2

+ E- I
[( t/lmcht/lm + sht/lm*+ Am (1 + IL )t/lmsh t/lm + 2cht/lm)

+ A;b'((1 + 1L)t/lmcht/lm - (I-IL)sht/lm) JDm2

-I " " 4(EAflp
+E I I Lm,[G,sAs2 +FrsDd = - A2 (26)

s-I,=I ma

where

(27)

To arrive at eqns (26) and (27) we employ the mathematical technique of taking out certain
superposition coefficients from under the summation signs relying on the well known tri­
gonometric orthogonality relations and the definite integral

f [a,(x - a)sha,x + a,xsha,(x - a) + 1~ILIL(cha,x + cha,(x - a)}J sin Amx dx

_ 4(a;-ILA~)(1 +cha,a)
- (A~+ah2 . (28)

Equilibrium about the minor axis
Considering the horizontal equilibrium of the beam of Fig. 2and the bending moment about its

minor axis we have

8N - (tu,yb)8x =0

Equations (29) and (30) combine to give

mm - tUYYb +~ .Fu % = O.

Taking m =-Eiuy,U and noting that F,u = -tcIJ,uyIY-b' eqn (31) now takes the form

(29)

(30)

(31)

(32)

Substituting for Uy'Um & c1JtUyly-b and performing the now familiar mathematical techniques
previously employed we arrive at

[(1 + IL)A ~isht/lm + tcht/lm + Aib, . tsht/lm JAm2

+ [(1 + IL)A~i(t/lmcht/lm - ~ ~ ;Sht/lm) + tt/lmsht/lm + Aib't(t/lmcht/lm + Sht/lm)]Dm2

" ..
- t I I Hm,[G,sAs2 +FrsDd = 0

,s-I,-I

where Hm, is as previously defined in (21).

(33)
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Loading
The loading to be applied here is the combination of the prestressing force and lateral loading

on the edge beams. The prestressing force is assumed to have a parabolicalIy varying
eccentricity relative to the centroid of the edge beam cross-section and having a maximum
value at midspan. We also present expressions that will enable us solve for cases of superim­
posed loading on the beams and slab.

By adopting a Fourier series representation for the loading, the Fourier coefficient of each
harmonic component of the loading is

where qn is the slab superimposed loading, P the prestressing force of maximum eccentricity
em, p the uniformly distributed loading and W the midspan point loading on the edge beam.

NUMERICAL EXAMPLES
Two cross-sections, shown in Fig. 3, are adopted as the edge beams for purposes of

computations. Further particulars of the adopted sections are given in Table 1 below.

Table I

Property Rectanqulu Inverted
Section T-Section

Breadth 0.491 ., 0.225 II

Depth 1.05 ., 1.20 II

""'ea 0.5156 ,,,2 0.36.,2

Second Moment of 0.047 366 .,4 0.047 324 II
4

Are., I

Second Moment of 0.010 375 .,4 0.004 331 II
4

Area, i.

Polar Second _ent
0.028 462 .,4 0.006 341 .,4

of Area, J

Eccentricity of Pres- 0.175 ., 0.1846 .,tressing Force

-+ 525

Dimttnsions In miUimtttrtts

Fig. 3.
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Other data relevant to the analysis are: slab thickness 0.15 m; span 10.0 m; modulus of
elasticity 21 x 106 kN/m2

; Poisson's ratio 0.15. In addition, the effect of changes in edge beam
properties like ftexural rigidities about the major and minor axes, torsional rigidity and
cross-sectional area, is investigated by adopting an edge beam of rectangular section and
varying the depth. Results relating to these changes of edge beam properties are better
presented in terms of edge beam depth to slab thickness ratio, Hit. An average direct stress of
14,000 kN/m2 is assumed as the initial prestress of the rib alone, while we adopt a transverse
point load of 1100 kN and uniformly distributed load of 220 kN/m, applied on the edge beams.

Computations
Equations (17), (20), (26) and (33) are the set of linear equations that are solved to determine

the four superposition coefficients A,., D,., A'2 and D,2 appearing in those equations. We note
that eqn (33) contains only the superposition coefficients A,2 and D,2 of the stress function ~,

while eqns (17), (20) and (26) contain the superposition coefficients A'I and D,I of the deftexion
field in addition to A,2 and D,2. By eliminating the superposition coefficients Arl and Drl from
these last three equations, we reduce them to one equation involving only Ar2 and Dr2, so that
we are now left with two equations involving A'2 and D,2 to program for the computer. Once
we solve for these sets of superposition coefficients, we obtain the A,I'S and D'I'S by back
substitution.

Once we have obtained these superposition coefficients, the deftexion field and the stress field
are quantitatively defined. In beam-slab interaction, in addition to pure bending of the two
interacting elements, both elements develop equal but opposite interacting axial forces that alter
their stress distributions from the pure bending distributions and hence alter their deftexion
profiles. It is therefore convenient, in the present case, to define the effective width of a slab as
that portion of its width having across it a constant stress, equal in magnitude to the stress in
the slab at its junction with the edge beam and thereby sustaining a force equal in magnitude to
the interacting axial force in each of the elements.

We may further define effective width factor as the fractional ratio of the effective width of a
slab interacting with an edge beam to its actual width available for developing the interacting
axial force in the slab. We express this mathematically as follows:

_ -~'YIY=b
- b~OYYIY. b •

(34)

It is obvious that eqn (34) will only involve the superposition coefficients Ar2 and D,2.
The computer program is developed, not only to solve for the superposition coefficients

appearing in eqns (17), (20), (26) and (33), but also to compute deftexions, stresses in edge
beams and the slab, the interacting axial forces and the effective width factors. The results are
given in Tables 2-4 in Figs. 3-7.

DISCUSSION OF RESULTS

Figures 4-6 and 4(a), 5(a) and 6(a) depict the characteristics under load of the edge beams
when they are of inverted T section and rectangular section respectively.

(i) Redistribution of prestress
Figures 4 and 4(a) show that there is a transfer of the prestress from the beams to the slab.

We also observe that under prestress alone, only a small fraction of the prestressing force is
transferred to the slab; this is due to the effect of bending of the section caused by eccentricity
of the prestressing force. We note however, that under live load, when the bending effect is
opposite to the prestressing one, the comprl~ssive force in the slab becomes appreciable.
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Table 2. Effective width factorS for prestressed L·beallts under different loading conditions

b
I-aection R1b Rectanqular Sect10n R1b

i' Pre.u... Pre.U..a+ Prestress. Pr..U ••• Prestress + Prestress +
alone Po1nt Load u.d.l alone Po1nt Load u.d.l

0 1.0 1.0 1.0 1.0 1.0 1.0

o.~ - - 0.926 - - 0.922

0.2 0.730 0.669 0.817 0.814 0.688 0.822

0.3 0.754 0.509 0.654 0.788 0.528 0.656

0.4 0.627 0.386 0.500 0.633 0.400 0.400

0.5 0.480 0.301 0.388 0.482 0.311 0.387

0.6 0.369 0.244 0.311 0.372 0.251 0.310

0.7 0.293 0.204 0.258 0.296 0.209 0.255

0.8 0.239 0.174 0.218 0.243 0.178 0.216

0.9 0.201 0.152 0.189 0.205 0.155 0.186

1.0 0.173 0.135 0.166 0.177 0.136 0.164

Table 3. Effective width factors for non·prestressed L·beams. under different loading conditions

I-Sect1on Rib Rectan9u1ar Rib

£
a Points u.d.l Po1nt u.d.l

Load Load

0 1.0 1.0 1.0 1.0

0.1 - 0.951 - 0.953

p.2 0.665 0.825 0.611 0.823

p.3 0.494 0.646 0.500 0.640

p.4 0.372 0.491 0.376 0.485

p.5 0.290 0.381 0.291 0.375

p.6 0.235 0.307 0.236 0.301

p.7 0.197 0.255 0.197 0.249

p.8 0.169 0.217 0.169 0.212

p.9 0.148 0.188 0.148 0.183

~.o 0.131 0.166 0.130 0.162

Table 4. Variation of effective width factors wit bending and torsional rigidities

,0\ 0.0 0.2 0.4 0.6 0.8 1.0

2.0 1.0 0.656 0.360 0.222 0.158 0.122

4.0 1.0 0.667 0.378 0.237 0.169 0.130

6.0 1.0 0.680 0.392 0.246 0.175 0.134

8.0 1.0 0.696 0.409 0.256 0.181 0.139

10.0 1.0 0.715 0.428 0.267 0.188 0.143

12.0 1.0 0.735 0.449 0.279 0.195 0.149

14.0 1.0 0.758 0.471 0.292 0.203 0.154

16.0 1.0 0.781 0.495 0.306 0.212 0.160

18.0 1.0 0.807 0.519 0.320 0.220 0.165

20.0 1.0 0.832 0.544 0.334 0.229 0.171
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(ii) Variation 01 effective widths
FiJUres 5 and 5(a) show the variation of effective width factor, {3, along the span for both

uniform loading and point loading for the two cross-sections considered. The curves for each
type of loading for the two cross-sections show similar trend, with the values of effective width
factors applicable to the rectangular edge beam being slightly higher than those applicable to

SS Vol. 17, No. 12-C
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the inverted T-beam for the point loading case, while values for the uniform loading are of the
same order of magnitude for both types of beams. Tabulated figures in Table 2gives the relative
magnitudes of effective width factors of slab applicable to the two types of edge beams adopted
for different beam loading.

An examination of these figures confirms the preceding observations in respect of effective
width factor variation for the edge beams considered under both point load and uniform
loading. The Table also presents effective width factors due to the effect of prestressing alone.
At low aspect ratios of the slab, there are differences between the values for the two types of
edge beams in respect of prestressing alone, whereas at aspect ratios of between 0.4 and 1.0
these differences become insignificant.

Tabulated values of slab effective width factors for the non-prestressed, non-reinforced
sections, assumed "elastic", are presented in Table 3 for point load and uniform loading. It is
significant that values obtained for the non-prestressed, non-reinforced edge beam case (always
assuming that the materials are elastic and can resist tension) and those obtained when the edge
beams are prestressed are of the same order of magnitude for the same type of transverse
loading. This is most probably due to the fact that the flexural and torsional rigidities of each
type of edge beam considered will remain nearly constant in both cases. Steel reinforcement in
the beams which would materially alter these rigntities could have produced significantly
different values of effective width factors for the same beam cross-section. Since flexural and
torsional rigidities depend partly on the geometry of the cross-section, these properties are
difficult to vary individually in a physically realisable cross-section. In order to study the effect
of changes in these properties of a section therefore, we adopt a rectangular cross-section of
fixed width but variable depth. We achieve this by varying the beam depth to slab thickness
ratio as a measure of the changes in these properties in a manner consistent with the assumed
rectangular geometry. Table 4 presents the variation of effective width factors with slab aspect
ratio and HIt ratios. It is obvious from these results that effective widths of slabs are dependent
on the flexural and torsional rigidities of the edge beams with which they interact-in addition
to their dependence on aspect ratios of the slabs themselves. The slab is made to participate
more fully as flexural and torsional rigidities of the edge beams increase.

(iii) Transverse deftexion
Figures 6 and 6(a) present the transverse deflexion behaviour of the two types of edge beams

under the loadings indicated. Apart from demonstrating the response of the sections to
prestressing and transverse loading, the figures show that the inverted T-rib exhibits higher
overall flexural resistance, in its deflection values, on interaction with the slab. This may be
because when the width of slab interacting with a beam is known, the resulting composite
section for the inverted T-rib yields higher flexural rigidities than the corresponding ones for a
rectangular rib.

(iv) Computation of stresses
Finally we present in Fig. 7 the stress blocks in one of the two types of edge beams adopted

due to "prestressing", "tranverse loading" and "prestress plus transverse loading". These
results demonstrate that the equations derived in the present analysis may find ready ap­
plication in the evaluation of alternative sections for this type of bridge-deck system especially
if the interest is on assessment of deftexions and the stresses induced under different
transversely symmetric loading conditions. Once the program is developed, results of alter­
native designs by the adoption of different cross-sections can be quickly assessed.

CONCLUSIONS

The analysis shows that effective width applicable to a rectangular slab stiffened by two
identical prestressed edge beams is not different from that for the case with unreinforced
stiffening edge beams. The prestressing force needed for resisting live load, can sufficiently be
estimated on the basis of the edge beam cross-sectional area alone carrying all the prestress. In
other words there is no need to consider any portion of the slab as acting with the beam in
estimating the required prestressing load.
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If the prestressing of the edge beams is done after the beam and slab had been cast, then
average compressive stress in the edge beam could be taken 0.6 of the maximum permissible
concrete compressive stress, since part of the prestressing load will be transferred to the
concrete slab deck. Where the edge beam cross-section is not simply rectangular, an equivalent
rectangular section having the same ftexural rigidity, assuming a breadth equal to the web
breadth, could be determined for the purpose of estimating Hit in order to find the applicable
effective width factor.
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